Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

نویسندگان

  • Marta Sevilla
  • Jose B Parra
  • Antonio B Fuertes
چکیده

The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of the pristine materials and up to 1.6 nm for the highly activated carbons (47% burnoff). The N-doped carbons possess ~3 wt % of N heteroatoms that are incorporated into several types of functional groups (i.e., pyrrole/pyridone, pyridine, quaternary, and pyridine-N-oxide). Under conventional operation conditions (i.e., T ~ 0-25 °C and P(CO2) ~ 0-1 bar), CO2 adsorption proceeds via a volume-filling mechanism, the size limit for volume-filling being ~0.7-0.8 nm. Under these circumstances, the adsorption of CO2 by nonfunctionalized porous carbons is mainly determined by the volume of the micropores with a size below 0.8 nm. It was also observed that the CO2 capture capacities of undoped and N-doped carbons are analogous which shows that the nitrogen functionalities present in these N-doped samples do not influence CO2 adsorption. Taking into account the temperature invariance of the characteristic curve postulated by the Dubinin theory, we show that CO2 uptakes can be accurately predicted by using the adsorption data measured at just one temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture

The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly ...

متن کامل

Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture.

Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m(2) g(-1), a large pore volume of 0.15-0.65 cm(3) g(-1), tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount...

متن کامل

High-performance CO2 sorbents from algae

Highly porous N-doped carbon materials with apparent surface areas in the 1300 2400 m g range and pore volumes up to 1.2 cm g have been synthesized from hydrothermal carbons obtained from mixtures of algae and glucose. The porosity of these materials is made up of uniform micropores, most of them having sizes < 1 nm. Moreover, they have N contents in the 1.1 4.7 wt% range, this heteroatom being...

متن کامل

Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption

Biomass wastes are considered as cost-effective and sustainable precursors to prepare activated carbons for CO2 capture. In this study, two biomass-derived activated carbons were prepared using peanut shell and sunflower seed shell, and the optimal activated carbons were obtained at low KOH/carbon ratio of about 1. The peanut shell derived activated carbon (P-973-1.00) and sunflower seed shell ...

متن کامل

Investigation of Activation Time on Pore Size Distribution of Activated Carbon Determined with Different Methods

Three activated carbons are synthesized in a rotary reactor at different activation times. The adsorption isotherms of the samples are measured The pore size distribution of the samples is determined using combined Saito and Foley method, BJH method. An average potential function has been determined inside the cylindrical pores. The effect of activation time on the pore size distribution sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 5 13  شماره 

صفحات  -

تاریخ انتشار 2013